ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Han Gon Kim, John C. Lee
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 300-316
Technical Paper | doi.org/10.13182/NSE97-A1937
Articles are hosted by Taylor and Francis Online.
A new critical heat flux (CHF) correlation has been developed by using the alternating conditional expectation (ACE) algorithm, which yields an optimal relationship between a dependent variable and multiple independent variables. In general, CHF correlation development requires tedious and time-consuming effort because it involves multivariate nonlinear regression analysis. For this reason, existing CHF correlations are usually applicable to specific, and often narrow, ranges of physical parameters. The ACE algorithm is applied to a collection of 12879 CHF data points for forced convective boiling in vertical tubes, and a generalized correlation covering a broad range of flow parameters is obtained. The mean, root mean square, and maximum errors of our new correlation are -0.558, 12.5, and 122.6%, respectively. Our CHF correlation represents the entire set of CHF data with an overall accuracy equivalent to or better than that of three existing correlations. Our results are particularly superior in the high-pressure region covering the rated conditions of pressurized water reactors, as well as in the low-pressure region.