ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
L. A. Hageman, J. B. Yasinsky
Nuclear Science and Engineering | Volume 38 | Number 1 | October 1969 | Pages 8-32
Technical Paper | doi.org/10.13182/NSE38-8
Articles are hosted by Taylor and Francis Online.
Alternating-direction implicit (ADI) time-differencing approximations are developed for the two-dimensional neutron group-diffusion equations. These methods are analyzed for accuracy and stability relative to the implicit-difference approach used in the TWIGL program. It is shown that for model problems (bare homogenous reactors with constant material properties) the ADI method is as accurate as the TWIGL method and much faster computationally. However, several numerical comparisons show that the ADI approach is asymptotically unstable for non-model problems unless extremely small time-steps are used. Such comparisons show the ADI methods (considered in this paper) to be inferior to the TWIGL method for realistic reactor-dynamic problems. A variant on the ADI scheme (ADI-B2) is developed and for a class of delayed supercritical problems shown to be potentially superior to all methods considered.