ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
P. M. Suárez, M. A. Arribére, S. Ribeiro Guevara, A. J. Kestelman
Nuclear Science and Engineering | Volume 127 | Number 3 | November 1997 | Pages 245-261
Technical Paper | doi.org/10.13182/NSE97-A1934
Articles are hosted by Taylor and Francis Online.
The reaction cross sections averaged over a 235U fission neutron spectrum have been measured for the 45Sc(n,)42K, 45Sc(n,2n)44Scg, and 45Sc(n,2n)44Scm threshold reactions. The values found for these cross sections are, respectively: 308 ± 16 b, 27.3 ± 1.3 b, and 22.0 ± 2.7 b, using 111 ± 3 mb as the averaged cross section for the 58Ni(n,p)58Com+g reaction that was used as a standard. To the authors' knowledge, these are the first experimental determinations of the 45Sc(n,2n)44Scg and 45Sc(n,2n)44Scm spectrum-averaged cross sections, which were measured using a new method for the case when both the ground and an isomeric state are generated.By fitting with a suitable function the experimental differential cross sections found in the EXFOR data file for each of these reactions, the corresponding spectrum-averaged cross sections have been calculated for nine different analytical representations of the 235U fission neutron spectrum. This calculation was also performed for the representation based on the Madland-Nix model of prompt fission neutrons. The agreement between calculated and measured values is in general excellent for the 45Sc(n,)42K low-threshold reaction. However, the agreement is rather poor for the 45Sc(n,2n) high-threshold reactions, except for two, Maxwellian-type, representations tried. Since it is well known that Watt-type representations, rather than the Maxwellian type, produce an overall better description of the 235U fission spectrum, the recommended analytical representations to be used are the Watt type. Taking into account their poor performance for high-threshold reactions and recognizing the practical importance of having an analytical representation that agrees with experimental data in the whole energy range, two new representations are presented, based on the one recommended for the ENDF/B-V file, for the 235U fission neutron spectrum, whose main merit is better agreement with experimental results.