ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
O. E. Dwyer, H. C. Berry
Nuclear Science and Engineering | Volume 42 | Number 1 | October 1970 | Pages 81-88
Technical Paper | doi.org/10.13182/NSE70-A19330
Articles are hosted by Taylor and Francis Online.
The findings of a theoretical study of heat transfer for laminar, in-line flow through unbaffled rod bundles are reported. The results of a numerical solution are given for equilateral triangular bundles, for P/D ratios ranging from 1.001 to 2.00, for fully developed temperature profiles, and for the thermal boundary conditions of uniform wall heat flux in all directions. They are given in terms of rod-average heat transfer coefficients and circumferential variations of the wall temperature. The rod-average heat transfer coefficient goes through a rather sharp maximum as the P/D ratio is varied, the maximum occurring at P/D = 1.20. The circumferential variation of the wall temperature, large at small P/D ratios, decreases as P/D is increased, until at P/D > ∼ 1.50 it is negligible. Results calculated for the thermal boundary conditions of uniform wall heat flux in the axial direction and uniform wall temperature in the circumferential direction agreed excellently with previous results, attesting to the accuracy of the present calculational method.