ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Luisa F. Hansen, Calvin Wong, Ted T. Komoto, Bertram A. Pohl, Eugene Goldberg, Robert J. Howerton, Walter M. Webster
Nuclear Science and Engineering | Volume 72 | Number 1 | October 1979 | Pages 35-51
Technical Paper | doi.org/10.13182/NSE79-A19307
Articles are hosted by Taylor and Francis Online.
The neutron and gamma-ray leakage spectra from pulsed spheres having a radius equal to 1.0 mean-free-path (mfp) for 14-MeV neutrons in 232Th, 235U (with radii of 0.7 and 1.5 mfp), 228U (with radii of 0.8 and 2.8 mfp), and 239Pu (with radii of 0.7 and 1.25 mfp) were measured by using time-of-flight techniques. The neutron spectra were measured between 0.9 and 15 MeV using stilbene and NE-213 scintillators. For the gamma rays, the electron recoil spectra were measured between 0.35 and 8 MeV with the NE-213 detector only. Pulse-shape discrimination and flight paths of ∼10 m were used in these measurements. The measured spectra are compared with calculations carried out with TARTNP, a coupled neutron-photon Monte Carlo transport code. The Lawrence Livermore Laboratory ENDL (neutron and photon cross sections) and ENDF/B-IV libraries were used in these calculations. In the region between 10 and 15 MeV, the calculated neutron spectra are in good agreement with the measurements (±5%). The maximum discrepancy observed for the neutrons between 0.9 and 10 MeV is 30%. The notable exception is 232Th, where calculations carried out with the ENDF/B-IV underestimate by a factor of 2 the neutron emission between 5 and 10 MeV. The gamma-ray emission calculations were carried out only with ENDL because of its overall better representation of the neutron measurements; ENDL overestimates the gamma-ray production, with discrepancies ranging between 5 and 20%. However, use of the measured detector efficiency would reduce the maximum discrepancy to <13%. To facilitate the use of the neutron data for calculational purposes by other laboratories, an “experimental” one-dimensional neutron energy spectrum is given for each measurement.