ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
R. M. Bansal, S. P. Tewari, L. S. Kothari
Nuclear Science and Engineering | Volume 76 | Number 1 | October 1980 | Pages 18-29
Technical Paper | doi.org/10.13182/NSE80-A19289
Articles are hosted by Taylor and Francis Online.
A new scattering kernel for heavy water has been proposed. The kernel takes into account the chemical binding energy effects and also includes the rotational and intramolecular vibrational modes. Using this scattering kernel, various neutron transport processes in the temperature range 5 to 60°C have been studied and compared with the corresponding experimental results. The calculated results include 1. total neutron scattering cross section at 20°C 2. asymptotic decay of neutron pulses in the temperature range 5 to 60°C and temperature variation of the diffusion coefficient and diffusion cooling coefficient 3. time-dependent spectra inside finite-sized assemblies of heavy water at 20 and 43.3°C 4. thermalization time 5. diffusion length and space-dependent study in pure and poisoned assemblies of heavy water.