ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
John E. Suich, Henry C. Honeck
Nuclear Science and Engineering | Volume 20 | Number 1 | September 1964 | Pages 93-110
Technical Paper | doi.org/10.13182/NSE64-A19279
Articles are hosted by Taylor and Francis Online.
A method is developed for calculating the temperature coefficient of ηf for heterogeneous reactor lattice cells on a fairly rigorous basis, using only microscopic material constants as input data. The method is based on the integral transport equation, and involves flux and adjoint weighting the temperatures derivatives of the kernels of the integral operators. Temperature coefficients are obtained for a localized temperature increase, as well as for a uniform increase in cell temperature. The coefficients are separated, on physical grounds, into ‘spectrum’ and ‘transport’ effects. The numerical accuracy of the method is found to be limited, at the present time, by the uncertainties in fuel reaction cross sections. The method is used in a brief survey of temperature effects in natural-uranium/graphite lattices. The transport temperature coefficients are shown to yield the dependence of the thermal multiplication factor on a velocity-averaged diffusion coefficient. The spectrum temperature coefficients give the dependence of the thermal multiplication factor on average neutron velocity and disadvantage factor. Non-diffusion effects are noticed when the region near the fuel is heated. The results of the method are compared with published experimental results for natural-uranium/graphite lattices. Good agreement between theory and experiment is obtained. The influence of reactor operating conditions on temperature coefficients is reproduced by the theory.