ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
John E. Suich, Henry C. Honeck
Nuclear Science and Engineering | Volume 20 | Number 1 | September 1964 | Pages 93-110
Technical Paper | doi.org/10.13182/NSE64-A19279
Articles are hosted by Taylor and Francis Online.
A method is developed for calculating the temperature coefficient of ηf for heterogeneous reactor lattice cells on a fairly rigorous basis, using only microscopic material constants as input data. The method is based on the integral transport equation, and involves flux and adjoint weighting the temperatures derivatives of the kernels of the integral operators. Temperature coefficients are obtained for a localized temperature increase, as well as for a uniform increase in cell temperature. The coefficients are separated, on physical grounds, into ‘spectrum’ and ‘transport’ effects. The numerical accuracy of the method is found to be limited, at the present time, by the uncertainties in fuel reaction cross sections. The method is used in a brief survey of temperature effects in natural-uranium/graphite lattices. The transport temperature coefficients are shown to yield the dependence of the thermal multiplication factor on a velocity-averaged diffusion coefficient. The spectrum temperature coefficients give the dependence of the thermal multiplication factor on average neutron velocity and disadvantage factor. Non-diffusion effects are noticed when the region near the fuel is heated. The results of the method are compared with published experimental results for natural-uranium/graphite lattices. Good agreement between theory and experiment is obtained. The influence of reactor operating conditions on temperature coefficients is reproduced by the theory.