ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
R. E. Rexroad, M. A. Schmoke H. J. Tiller, A. Foderaro, L. Degelman, G. Kowal
Nuclear Science and Engineering | Volume 20 | Number 1 | September 1964 | Pages 66-79
Technical Paper | doi.org/10.13182/NSE64-A19276
Articles are hosted by Taylor and Francis Online.
An analysis was made of shielding data obtained from an experiment designed to determine the wall attenuation properties against residual gamma radiation of a simple 12 ft × 12 ft × 8 ft concrete blockhouse for three different wall thicknesses (48, 93.7 and 139 lb/ft2). Roof thickness was chosen so that radiation scattered through the roof could be considered negligible. A plane source was simulated by successively positioning point isotropic Co60 and Cs137 sources on the ground surrounding the structure. The experiment was designed to obtain experimental evidence for the validity of certain aspects of L. V. Spencer's Theory of Structure Shielding against Fallout Radiation as presented in NBS Monograph 42. From analysis of a total of 9700 measurements, a point-to-point kernel was developed which permits calculation of the dose rate at any point within the structure from a point isotropic source on the ground outside. Doses calculated from the kernel differ less than 10 to 50 per cent from the experimental doses, except at extreme angles of incidence where the error can exceed a factor of 2. A computer program has been written which integrates the point-to-point kernel over infinite or finite rectangular areas. The kernel was integrated over an infinite area and results were compared with those obtained from Spencer's theory. It was found that the difference in reduction factor D/D0 from ‘experimental’ point-to-point kernel data and Spencer's theory did not exceed 40 per cent. Free-field (unshielded detector) dose rates obtained from integrating the point-to-point kernel over Co60 and Cs137 infinite-plane isotropic sources have been compared with those obtained experimentally by Rex-road and Schmoke. The difference was found to be 9 and 7 per cent respectively for the Co60 and the Cs137 source fields.