ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. E. Rexroad, M. A. Schmoke H. J. Tiller, A. Foderaro, L. Degelman, G. Kowal
Nuclear Science and Engineering | Volume 20 | Number 1 | September 1964 | Pages 66-79
Technical Paper | doi.org/10.13182/NSE64-A19276
Articles are hosted by Taylor and Francis Online.
An analysis was made of shielding data obtained from an experiment designed to determine the wall attenuation properties against residual gamma radiation of a simple 12 ft × 12 ft × 8 ft concrete blockhouse for three different wall thicknesses (48, 93.7 and 139 lb/ft2). Roof thickness was chosen so that radiation scattered through the roof could be considered negligible. A plane source was simulated by successively positioning point isotropic Co60 and Cs137 sources on the ground surrounding the structure. The experiment was designed to obtain experimental evidence for the validity of certain aspects of L. V. Spencer's Theory of Structure Shielding against Fallout Radiation as presented in NBS Monograph 42. From analysis of a total of 9700 measurements, a point-to-point kernel was developed which permits calculation of the dose rate at any point within the structure from a point isotropic source on the ground outside. Doses calculated from the kernel differ less than 10 to 50 per cent from the experimental doses, except at extreme angles of incidence where the error can exceed a factor of 2. A computer program has been written which integrates the point-to-point kernel over infinite or finite rectangular areas. The kernel was integrated over an infinite area and results were compared with those obtained from Spencer's theory. It was found that the difference in reduction factor D/D0 from ‘experimental’ point-to-point kernel data and Spencer's theory did not exceed 40 per cent. Free-field (unshielded detector) dose rates obtained from integrating the point-to-point kernel over Co60 and Cs137 infinite-plane isotropic sources have been compared with those obtained experimentally by Rex-road and Schmoke. The difference was found to be 9 and 7 per cent respectively for the Co60 and the Cs137 source fields.