ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Harvey J. Amster, Wilson K. Talley
Nuclear Science and Engineering | Volume 20 | Number 1 | September 1964 | Pages 53-59
Technical Paper | doi.org/10.13182/NSE64-A19274
Articles are hosted by Taylor and Francis Online.
When describing neutrons interacting with homogeneous media, Monte Carlo can generate a sequence of energies and flight directions without locating the positions of the collisions that produced them. If the spatial distribution of one of these collisions is then described analytically, unbiased direct samples of the neutron density can conveniently be obtained at specified positions and energies and at discretely sampled angles. Previous applications for plane sources in infinite media with real cross sections are here generalized for plane sources in slabs and point sources within infinite half spaces. A modified treatment for heterogeneous media is also formulated. These extensions to other geometries can provide not only additional calculational standards, but also theoretical results that could disagree with experimental facts only because of the assumed nuclear data.