ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
E. Creutz
Nuclear Science and Engineering | Volume 20 | Number 1 | September 1964 | Pages 28-44
Technical Paper | doi.org/10.13182/NSE64-A19272
Articles are hosted by Taylor and Francis Online.
The flow rates of gases at room temperature through various porous materials have been measured for large ranges of average pressure and pressure difference across the samples such that PΔP for a given sample varies by factors as large as 106. These rates are proportional to (PΔP)γ where γ decreases from 1 to 0.5 as the flow increases and 7 for a given medium is a function of an effective Reynolds number only, independent of the gas used. All the data, including those for transition flow, may be expressed by the following equation: where F is an average flow rate of gas passing through the medium measured in units of cm3/sec at 1 atm pressure, the coefficients c1 and c2 depend only on the properties of the porous medium and can be determined from experiments at low rates of laminar flow and high rates of fully turbulent flow, respectively, the coefficient α is given by ln 2, where ρ1 is the gas density at 1 atm pressure and room temperature, and η is the viscosity. Making the transformation and changing to the exponential base 2, the general equation becomes This dimensionless equation egresses experimental data for a variety of gases and porous media as examined in this study over a range of about 1011 for the variable x and about 2 × 109 for the variable y. It also egresses some data of others on flow through various porous metals and through beds of granular solids. Mean hydraulic radii of pores, effective numbers of pores, friction factors, and surface-roughness factors for the samples investigated are given.