ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
W. J. O'Donnell, B. F. Langer
Nuclear Science and Engineering | Volume 20 | Number 1 | September 1964 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE64-A19269
Articles are hosted by Taylor and Francis Online.
General methods have recently been developed for low-cycle fatigue design. The required basic strain-controlled data for both unirradiated and irradiated Zircaloy–2, −3, and −4 were obtained for temperatures between 70 F and 600 F. Data include both rolled and base-annealed material, and as-welded material tested in various directions. The “cyclic” stress-strain properties of these materials were also obtained and were found to differ quite significantly from the conventional properties. Using the cyclic properties in a Modified Goodman Diagram, fatigue-failure curves were developed which included the deleterious effect of the maximum possible mean stress that can exist in the material as it is cycled. Limited available test data confirm the validity of this method. Using the resulting curves, one need only consider the cyclic stress loads. The worst possible effects of residual stresses due to welding and other fabrication methods, and mean stresses due to differential thermal expansion are included in the curves. The phenomenon of fuel growth introduces a monotonically increasing strain which accompanies the cyclic strain. The effects of such a gradually accumulating increment of strain were investigated and were found to be adequately covered by the adjustment for maximum mean stress. Design curves were constructed from the mean failure curves by applying approximate factors to cover the effects of size, environment, surface finish and scatter of data. The results of fatigue tests on notched irradiated Zircaloy indicate that this material is somewhat less notch sensitive than 100 000-lb/in.2 tensile strength steel. Unirradiated Zircaloy is even less notch sensitive. However, fatigue tests on notched weld metal indicate considerably greater notch sensitivity.