ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Helmut Kunze
Nuclear Science and Engineering | Volume 23 | Number 1 | September 1965 | Pages 90-97
Technical Paper | doi.org/10.13182/NSE65-A19262
Articles are hosted by Taylor and Francis Online.
For the heavy-gas model, the stationary space-dependent neutron spectrum in one- and two-dimensional heterogeneous thermal reactors is determined in the diffusion approximation. The fuel elements, which are not necessarily identical, and absorbing slabs or rods are arranged arbitrarily. However, absorption in all of them is assumed to follow a l/v law. The neutron flux is represented as a linear combination of the lowest eigenfunction of the Laplace operator for the geometry considered and a finite set of Green's functions for the stationary-wave equation for various, usually imaginary, wave numbers. The energy-dependent coefficients are determined by the author's method, developed in an earlier paper. The lowest eigenfunctions of the Laplace operator and Green's functions for the stationary-wave equation are given for some geometries of practical interest. Solutions found earlier for simple geometries may now be regarded as special representations of these Green's functions. But in these cases, too, other representations can be found which are to be preferred for numerical reasons.