ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Helmut Kunze
Nuclear Science and Engineering | Volume 23 | Number 1 | September 1965 | Pages 90-97
Technical Paper | doi.org/10.13182/NSE65-A19262
Articles are hosted by Taylor and Francis Online.
For the heavy-gas model, the stationary space-dependent neutron spectrum in one- and two-dimensional heterogeneous thermal reactors is determined in the diffusion approximation. The fuel elements, which are not necessarily identical, and absorbing slabs or rods are arranged arbitrarily. However, absorption in all of them is assumed to follow a l/v law. The neutron flux is represented as a linear combination of the lowest eigenfunction of the Laplace operator for the geometry considered and a finite set of Green's functions for the stationary-wave equation for various, usually imaginary, wave numbers. The energy-dependent coefficients are determined by the author's method, developed in an earlier paper. The lowest eigenfunctions of the Laplace operator and Green's functions for the stationary-wave equation are given for some geometries of practical interest. Solutions found earlier for simple geometries may now be regarded as special representations of these Green's functions. But in these cases, too, other representations can be found which are to be preferred for numerical reasons.