ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
S. K. Davis, J. A. De Juren, M. Reier
Nuclear Science and Engineering | Volume 23 | Number 1 | September 1965 | Pages 74-81
Technical Paper | doi.org/10.13182/NSE65-A19260
Articles are hosted by Taylor and Francis Online.
Measurements of the shape of the fundamental mode of a thermalized neutron pulse in graphite for rectangular stacks has yielded a value of the extrapolation length, d = 1.825 ± 0.025 cm. The pulsed-neutron decay constants in graphite have been measured over a buckling range from 1.946 × 10−3 to 1.230 × 10−2 cm −2 and fitted to three- and four-term power series in the buckling. To fit points at bucklings greater than 6.0 × 10−3 cm−2, a cubic fit is necessary. An iterative method of fitting the decay constants results in an extrapolation length of 1.78 ± 0.01 cm. The diffusion constant was (2.0896 ± 0.0093) × 105cm2/sec, and the diffusion cooling constant was (3.77 ± 0.35) × 106 cm4/sec at a density of 1.689 g/cm3. A technique of correcting the decay constants for the effect of spectral cooling has been developed. The decay constants corrected to room temperature can be fitted as a linear function of the buckling. This method interates on the heat-transfer coefficient, γ, and gives a value of γ = 1633 ± 89 sec−1 for graphite. The heat-transfer coefficient relates the rate of energy transfer from a moderator to a cooled-neutron spectrum. With this approach the entire buckling range can be fitted with three parameters.