ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
Steve Kahn, Randall Harman, Vernon Forgue
Nuclear Science and Engineering | Volume 23 | Number 1 | September 1965 | Pages 8-20
Technical Paper | doi.org/10.13182/NSE65-A19254
Articles are hosted by Taylor and Francis Online.
Energy spectra were obtained experimentally for fission fragments escaping from backed films of enriched uranium dioxide that were less than 11 µm thick. The data were reduced to give values for the relative average escape energies (R), escape fractions (S) and energy deposition efficiencies (D). A mathematical model was developed to synthesize these results using a Monte-Carlo-type computer code. This code included the fission-fragment masses, yields, and initial energies, the experimental source-detector geometry, a range-energy relationship, an energy-loss relationship and a function for the pulse-height defect in surface-barrier detectors. Various functions for these last three parameters were used in combination to obtain results that duplicated the experimental spectra and R, S and D values. The agreement was obtained with range proportional to (energy)1/2, the square energy-loss function, and pulse-height defect = A (E) (M-B), where A and B are constants and E and M are energy and mass, respectively. The experimental detection functions were removed from the code, and the spectra and R, S and D values were calculated for a 2π geometry. These values agreed well with those calculated using weighted averages for range and initial energy.