ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Steve Kahn, Randall Harman, Vernon Forgue
Nuclear Science and Engineering | Volume 23 | Number 1 | September 1965 | Pages 8-20
Technical Paper | doi.org/10.13182/NSE65-A19254
Articles are hosted by Taylor and Francis Online.
Energy spectra were obtained experimentally for fission fragments escaping from backed films of enriched uranium dioxide that were less than 11 µm thick. The data were reduced to give values for the relative average escape energies (R), escape fractions (S) and energy deposition efficiencies (D). A mathematical model was developed to synthesize these results using a Monte-Carlo-type computer code. This code included the fission-fragment masses, yields, and initial energies, the experimental source-detector geometry, a range-energy relationship, an energy-loss relationship and a function for the pulse-height defect in surface-barrier detectors. Various functions for these last three parameters were used in combination to obtain results that duplicated the experimental spectra and R, S and D values. The agreement was obtained with range proportional to (energy)1/2, the square energy-loss function, and pulse-height defect = A (E) (M-B), where A and B are constants and E and M are energy and mass, respectively. The experimental detection functions were removed from the code, and the spectra and R, S and D values were calculated for a 2π geometry. These values agreed well with those calculated using weighted averages for range and initial energy.