ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
B. R. Wienke, J. E. Morel
Nuclear Science and Engineering | Volume 105 | Number 1 | May 1990 | Pages 79-87
Technical Paper | doi.org/10.13182/NSE90-A19214
Articles are hosted by Taylor and Francis Online.
Thermonuclear burn criteria, with charged-particle energy deposition, in fusion plasmas using a perturbative expansion of the coupled burn and transport equations about any quasi-equilibrium temperature are examined. Burn propagation and energy deposition are coupled in a reaction wave model, and effects are quantified using linearized one-temperature-plus-diffusion equations. Eigenvalue growth rate and propagation criteria, which depend on plasma properties and alpha mean-free-paths, are described. Effective cross sections appropriate to random mixtures are discussed, and burn propagation and energy deposition in limiting cases of homogeneous and heterogeneous media are contrasted. Methodology is general to thermonuclear processes, but our focus is deuterium-tritium burn in the reaction d + t → n + α.