ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
W. L. Filippone, S. P. Monahan, S. Woolf, J. C. Garth
Nuclear Science and Engineering | Volume 105 | Number 1 | May 1990 | Pages 52-58
Technical Paper | doi.org/10.13182/NSE90-A19212
Articles are hosted by Taylor and Francis Online.
The Sn method for solving the Spencer-Lewis equation for electron transport has been extended to treat three-dimensional multiregion problems. The flux continuity condition, which holds when the flux is expressed as a function of path length for single material region problems, is generalized for multiregion problems by reexpressing the flux as a function of energy. Expressing the fluxes in terms of fixed energy increments, independent of material, rather than fixed path length increments, results in a set of Sn/diamond-difference equations that are nearly identical in form to conventional Sn/diamond-difference equations. The Sn method is then applied to calculate electron energy deposition due to 200-keV electron beams incident on problem geometries typical of silicon and gallium-arsenide semiconductor microelectronic devices. The energy deposition results were found to compare well with results of ACCEPT Monte Carlo calculations. Computer run times required for the Sn calculations were found to be lower than that required for Monte Carlo by factors ranging from 30 to 50.