ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
I. K. Abu-Shumays
Nuclear Science and Engineering | Volume 105 | Number 1 | May 1990 | Pages 40-51
Technical Paper | doi.org/10.13182/NSE90-A19211
Articles are hosted by Taylor and Francis Online.
Effective utilization of translational or rotational periodic boundary conditions, when applicable, can substantially reduce the cost of solving very large multidimensional elliptic diffusion problems. Application of periodic boundary conditions, however, perturbs the overall matrix structure of the underlying discretized diffusion equations, and special care should be exercised to avoid loss of computational efficiency. For simplicity, only the numerical solution of two-dimensional diffusion problems is discussed. Developing and testing on a vector computer alternative algorithms for implementing periodic boundary conditions within the framework of point and line iteration methods are described. For illustration, only the point Chebyshev and red-black line cyclic Chebyshev iterative methods are considered. Vectorization methods previously developed are extended to allow for periodic boundary conditions. The method of odd-even cyclic reduction as applied to vectorization of the solution of tridiagonal systems is generalized to apply to special matrix equations that are almost of tridiagonal form. Consequently, it is demonstrated numerically on a CYBER 205 computer for model two-dimensional problems that the resulting red-black line cyclic Chebyshev iterative method is computationally superior to the highly vectorizable point Chebyshev iterative method. The superiority of the red-black line methods over the point methods is expected to hold for more complex problems with general mesh triangulations.