ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
R. T. Santoro, R. G. Alsmiller, Jr., J. M. Barnes, T. A. Gabriel
Nuclear Science and Engineering | Volume 105 | Number 3 | July 1990 | Pages 278-289
Technical Paper | doi.org/10.13182/NSE90-A19192
Articles are hosted by Taylor and Francis Online.
The Monte Carlo codes MORSE and MCNP have been used to calculate the tritium production from ≈ 14-MeV neutron reactions in a Li2O assembly. Tritium production from neutron reactions with 6Li and 7Li nuclei were calculated along the central axis of a 0.60-m-diam × 0.60-m-long assembly and four additional assemblies where sheets of Type 304 stainless steel and polyethylene were placed in front of the Li2O to simulate first-wall and coolant materials. The calculated data are compared with measured data obtained at the Fusion Neutron Source at the Japan Atomic Energy Research Institute. The calculated data reproduce the measured data in shape, but differ from the measured data by 10 to 20% in the case of 6Li and as much as 30% at some spatial locations for the 7Li tritium production.