ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Scott A. Turner, Edward W. Larsen
Nuclear Science and Engineering | Volume 127 | Number 1 | September 1997 | Pages 22-35
Technical Paper | doi.org/10.13182/NSE127-22
Articles are hosted by Taylor and Francis Online.
A new automated variance reduction method for the Monte Carlo simulation of multigroup neutron transport source-detector problems is described. The method is based on a modified transport problem that can be solved by analog Monte Carlo with zero variance. The implementation of this modified problem is impractical, in part because it requires the exact solution of an adjoint transport problem. The new local importance function transform (LIFT) method is developed to overcome this difficulty by approximating the exact adjoint solution with a piecewise-continuous function containing parameters that are obtained from a deterministic adjoint calculation. The transport and collision processes of the transformed Monte Carlo problem bias source distribution, distance to collision, and selection of postcollision energy groups and directions. A companion paper provides numerical results that demonstrate the efficiency of the LIFT method.