This paper presents a new attempt towards the development of a systematic method for solving the fuel cycling management optimization problem in modern PWR cores. When the infinite multiplication factor k is used as a single variable to describe the fuel distribution over the core at any stage of its life, the analysis of any reloading pattern can be performed on the basis of its corresponding k-map in the X-Y plane, or more simply, on the basis of its equivalent “k-profile” in cylindrical geometry. Conversely, it is shown how the reloading pattern can be synthesized from the k-profile, which becomes, therefore, the main tool of the method. The search for the best k-profile rests on the analysis of the necessary relations existing, for any particular reloading mode (batch, multiregion, salt-and-pepper, etc.) between the k-profiles and cycle times, and on the use of a cycle “internal optimality condition” aiming to maximize the reactivity of the reloading k-profile, and consequently, the cycle life time, with a constraint on the power-peak factor. As a result, the general many-variable cycling problem can be contracted into a single control-variable problem which, in turn, can be separated into the following two simpler tasks: a cycle internal optimization problem consisting of finding the reloading mode and the single control variable which minimize the stationary cycle cost and a cycle external optimization problem aiming to minimize the cost penalty associated with any deviation of the cycling sequence from the optimal stationary cycle. Using the particular class of optimal k-profiles complying with the maximum power (minimum peak factor) condition, the method is applied to the analysis of the stationary and transient cycles of the SENA reactor, with the three-region mixed reload mode. The methods for calculating the optimal profile classes corresponding to an arbitrary peak factor are also indicated.