ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Gary M. Sandquist
Nuclear Science and Engineering | Volume 37 | Number 3 | September 1969 | Pages 443-450
Technical Paper | doi.org/10.13182/NSE69-A19118
Articles are hosted by Taylor and Francis Online.
A method for determining stabilizing control functions for any first-order controllable system is presented. Examples of stabilizing feedback control are examined and corroborated for stability using the second method of Liapunov. Consideration of a general class of arbitrary degree stabilizing feedback-control functions reveals that linear feedback control produces the greatest damping. Examination of signal error and time delay in the control function shows that highly damping control can result in system oscillation. Finally the method is extended to systems of higher order and a stabilizing control function is found for the reactor-kinetic equations even with unmonitored delayed neutrons if the linear feedback-control gain is > β/l.