ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
A. Amendola
Nuclear Science and Engineering | Volume 41 | Number 3 | September 1970 | Pages 343-350
Technical Paper | doi.org/10.13182/NSE70-A19092
Articles are hosted by Taylor and Francis Online.
A new statistical method for evaluation of hot channel and hot spot factors is presented. A new definition of “hot spot” is proposed with which the probability of exceeding critical temperatures can be correlated to the size of the zone in which they occur. In contrast to previous methods, the hot channel factors are demonstrated to be independent of the assumed spot size, provided that the uncertainties are correctly specified. Therefore, a new criterion is proposed for specification of the uncertainties which are random variables along the fuel pin axis, and the concept of a “specific standard deviation” is introduced. The different effects of the uncertainties, whether they act on single elements of the core, on groups of elements or on the whole core, are taken into account by an appropriate procedure. The statistical analysis takes into account the whole core with its particular axial and radial nominal temperature profiles. The principal results obtained by the SHØSPA code for the sodium-cooled fast reactor Na-2 are discussed.