ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
P. Wälti
Nuclear Science and Engineering | Volume 45 | Number 3 | September 1971 | Pages 321-330
Technical Paper | doi.org/10.13182/NSE71-A19084
Articles are hosted by Taylor and Francis Online.
The calculation of effective cross sections for materials with grain structure has been investigated. A method is outlined based on Sauer's formalism that is not restricted to loosely packed grains and small ratios of scattering to total cross sections, in contrast to the treatment based on isolated grains reported earlier by Dyos and Pomraning. The method is applicable for GAROL type resonance calculations, i.e., resonance treatments based on an explicit calculation of the detailed energy spectrum, as well as for reactor cell calculations at thermal energies. As an example, the grain shielding factors for 400 µ ThC2 grains in a carbon moderator have been calculated as energy-dependent quantities through the 21.8 and 23.5 eV thorium resonances at 300°K. The results are compared with a GAROL reference calculation (set up for the grains) and with the method given by Dyos and Pomraning. The maximum error for the energy-dependent grain shielding factors in the present method is 1.3% compared with 11.3% in the method of Dyos and Pomraning. Application of the present method at thermal energies on 200-µ PuO2 grains embedded in a carbon moderator yields energy-dependent grain shielding factors that differ by <1% from a S8-P1 multigroup reference calculation.