ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
P. Wälti
Nuclear Science and Engineering | Volume 45 | Number 3 | September 1971 | Pages 321-330
Technical Paper | doi.org/10.13182/NSE71-A19084
Articles are hosted by Taylor and Francis Online.
The calculation of effective cross sections for materials with grain structure has been investigated. A method is outlined based on Sauer's formalism that is not restricted to loosely packed grains and small ratios of scattering to total cross sections, in contrast to the treatment based on isolated grains reported earlier by Dyos and Pomraning. The method is applicable for GAROL type resonance calculations, i.e., resonance treatments based on an explicit calculation of the detailed energy spectrum, as well as for reactor cell calculations at thermal energies. As an example, the grain shielding factors for 400 µ ThC2 grains in a carbon moderator have been calculated as energy-dependent quantities through the 21.8 and 23.5 eV thorium resonances at 300°K. The results are compared with a GAROL reference calculation (set up for the grains) and with the method given by Dyos and Pomraning. The maximum error for the energy-dependent grain shielding factors in the present method is 1.3% compared with 11.3% in the method of Dyos and Pomraning. Application of the present method at thermal energies on 200-µ PuO2 grains embedded in a carbon moderator yields energy-dependent grain shielding factors that differ by <1% from a S8-P1 multigroup reference calculation.