ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. Wälti
Nuclear Science and Engineering | Volume 45 | Number 3 | September 1971 | Pages 321-330
Technical Paper | doi.org/10.13182/NSE71-A19084
Articles are hosted by Taylor and Francis Online.
The calculation of effective cross sections for materials with grain structure has been investigated. A method is outlined based on Sauer's formalism that is not restricted to loosely packed grains and small ratios of scattering to total cross sections, in contrast to the treatment based on isolated grains reported earlier by Dyos and Pomraning. The method is applicable for GAROL type resonance calculations, i.e., resonance treatments based on an explicit calculation of the detailed energy spectrum, as well as for reactor cell calculations at thermal energies. As an example, the grain shielding factors for 400 µ ThC2 grains in a carbon moderator have been calculated as energy-dependent quantities through the 21.8 and 23.5 eV thorium resonances at 300°K. The results are compared with a GAROL reference calculation (set up for the grains) and with the method given by Dyos and Pomraning. The maximum error for the energy-dependent grain shielding factors in the present method is 1.3% compared with 11.3% in the method of Dyos and Pomraning. Application of the present method at thermal energies on 200-µ PuO2 grains embedded in a carbon moderator yields energy-dependent grain shielding factors that differ by <1% from a S8-P1 multigroup reference calculation.