ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
Yamato Asakura, Hiroyuki Tsuchiya, Hideo Yusa, Shinpei Matsuda
Nuclear Science and Engineering | Volume 79 | Number 1 | September 1981 | Pages 49-55
Technical Paper | doi.org/10.13182/NSE81-A19041
Articles are hosted by Taylor and Francis Online.
The catalyzed exchange reaction between liquid water and hydrogen gas has been studied using a hydrophobic catalyst of platinum deposited on a porous Teflon support. The reaction was studied with a new method in which a mixture of water mists and hydrogen gas moves downward through the catalyst bed co-currently. This new method was employed to improve the poor contact efficiency between liquid water and hydrogen gas in the hydrophobic catalyst bed. It was found that the reaction rate increased an order of magnitude over the conventional method in which liquid water and hydrogen gas react countercurrently. These experimental results have been analyzed in terms of a rate determining step and compared with previous ones.