ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
John Greenstadt
Nuclear Science and Engineering | Volume 82 | Number 1 | September 1982 | Pages 78-95
Technical Paper | doi.org/10.13182/NSE82-A19030
Articles are hosted by Taylor and Francis Online.
The application of the cell discretization (CD) method to a class of nuclear reactor problems is described. The CD method is based on partitioning the domain in which the diffusion equations are to be solved into a set of subdomains, or “cells.” This approach, which resembles that used in the finite element method, nevertheless differs from it in certain important respects, some of which are mentioned in the course of describing CD. A FORTRAN program has been written that implements many of the features of the CD method, but is restricted to rectangular geometry. Several representative problems from the literature are solved numerically with CD, and the results are compared with the published ones. The central processor unit times are given for solution of these problems on the IBM 370/158 under VM, a time-sharing system. All results, including keff, peak-to-average-power ratios, integrated fluxes, etc. are listed in tables in such a way as to make comparison convenient. Flux plots are also shown for those cases where they were given in the literature.