ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Anujit Basu, Eric B. Bartlett
Nuclear Science and Engineering | Volume 116 | Number 4 | April 1994 | Pages 313-325
Technical Paper | doi.org/10.13182/NSE94-A18990
Articles are hosted by Taylor and Francis Online.
An artificial neural network (ANN)-based diagnostic adviser capable of identifying the operating status of a nuclear power plant is described. A dynamic node architecture scheme is used to optimize the architectures of the two backpropagation ANNs that embody the adviser. The first or root network is used to determine whether or not the plant is in a normal operating condition. If the plant is not in a normal condition, the second or classifier network is used to recognize the particular off-normal condition or transient taking place. These networks are developed using simulated plant behavior during both normal and abnormal conditions. The adviser is effective at diagnosing 27 distinct transients based on 43 scenarios simulated at various severities that contain up to 3% noise.