ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
“Summer time” again? Santee Cooper thinks so
South Carolina public utility Santee Cooper and its partner South Carolina Electric & Gas (SCE&G) called a halt to the Summer-2 and -3 AP1000 construction project in July 2017, citing costly delays and the bankruptcy of Westinghouse. The well-chronicled legal fallout included indictments and settlements, and ultimately left Santee Cooper with the ownership of nonnuclear assets at the construction site in Jenkinsville, S.C.
Kou-John Hong, J. Kenneth Shultis
Nuclear Science and Engineering | Volume 80 | Number 4 | April 1982 | Pages 570-578
Technical Paper | doi.org/10.13182/NSE82-A18970
Articles are hosted by Taylor and Francis Online.
For transport problems with fine energy group structure, the group-to-group transfer, cross sections are usually quite anisotropic in the scattering angle. It is shown for neutron inelastic scattering that explicit use of the characteristic shape of these transfer cross sections permits more efficient and accurate numerical evaluation of their Legendre expansion coefficients than is afforded by existing techniques. In addition, transfer cross sections can often be well approximated by piecewise, low-order polynomials with which very accurate and simple expressions can be derived for the Legendre coefficients. This analytical approach both minimizes the access of nuclear data files and accurately determines even the higher order coefficients.