ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
R. E. Howe, J. C. Browne, R. J. Dougan, R. J. Dupzyk, J. H. Landrum
Nuclear Science and Engineering | Volume 77 | Number 4 | April 1981 | Pages 454-462
Technical Paper | doi.org/10.13182/NSE81-A18958
Articles are hosted by Taylor and Francis Online.
The fission neutron multiplicity, , of 242mAm(n,f) was measured relative to that of 235U(n,f) using the neutron time-of-flight facility at the Lawrence Livermore National Laboratory 100-MeV electron Linac. Incident neutron energies ranged from 0.037 to 30 MeV. Fission fragments were detected using two hemispherical ionization chambers each containing ∼400 µg of 99.2% pure 242mAm. A separate fission chamber with 8.3 mg of 235U was situated between the two 242Am chambers and provided a normalization at every data point. Fission neutrons were detected in a liquid benzene scintillator using pulse-shape discrimination to separate gamma rays from neutrons. A comparison of the measured energy dependence of is made with semi-empirical models of neutron emission from the actinides.