ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
R. E. Howe, J. C. Browne, R. J. Dougan, R. J. Dupzyk, J. H. Landrum
Nuclear Science and Engineering | Volume 77 | Number 4 | April 1981 | Pages 454-462
Technical Paper | doi.org/10.13182/NSE81-A18958
Articles are hosted by Taylor and Francis Online.
The fission neutron multiplicity, , of 242mAm(n,f) was measured relative to that of 235U(n,f) using the neutron time-of-flight facility at the Lawrence Livermore National Laboratory 100-MeV electron Linac. Incident neutron energies ranged from 0.037 to 30 MeV. Fission fragments were detected using two hemispherical ionization chambers each containing ∼400 µg of 99.2% pure 242mAm. A separate fission chamber with 8.3 mg of 235U was situated between the two 242Am chambers and provided a normalization at every data point. Fission neutrons were detected in a liquid benzene scintillator using pulse-shape discrimination to separate gamma rays from neutrons. A comparison of the measured energy dependence of is made with semi-empirical models of neutron emission from the actinides.