ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
F. Rahnema, G. C. Pomraning
Nuclear Science and Engineering | Volume 77 | Number 4 | April 1981 | Pages 438-443
Technical Paper | doi.org/10.13182/NSE81-A18956
Articles are hosted by Taylor and Francis Online.
It is well known that for a large reactor a diffusion calculation of the system eigenvalue (criticality) is weakly dependent on the linear extrapolation distance γ. We characterize this weak dependence by a smallness parameter ϵ, and show that the complete neglect of γ leads to an error in the computed eigenvalue of the order of ϵ, whereas the use of an extrapolated endpoint introduces an error of the order of ϵ2. An explicit formula, which preserves the ϵ2 error characteristics, is derived which gives an energy independent extrapolated endpoint in terms of the energy-dependent linear extrapolation distance.