ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
W. C. Rivard, J. R. Travis
Nuclear Science and Engineering | Volume 74 | Number 1 | April 1980 | Pages 40-48
Technical Paper | doi.org/10.13182/NSE80-A18945
Articles are hosted by Taylor and Francis Online.
A new model is described for nonequilibrium vapor production (flashing) in critical two-phase flow. The model is based on a description of turbulence enhanced thermal diffusivity in the liquid and a Weber number criterion for bubble size. In a quiescent environment, the model reduces to the well-known conduction controlled rate. Results of calculations are compared with flow rate and pressure data from blowdown experiments with various nozzle geometries. The nozzle throat diameters range from 1.8 to 51.0 cm and nozzle inlet conditions vary from water subcooled 30°C to saturated water at 98% vapor volume fraction. The calculations are made with the two-fluid code K-FIX and show very good agreement throughout the entire blowdown.