ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
Francis Y. Tsang, Robert M. Brugger
Nuclear Science and Engineering | Volume 74 | Number 1 | April 1980 | Pages 34-39
Technical Paper | doi.org/10.13182/NSE80-A18944
Articles are hosted by Taylor and Francis Online.
A filtered neutron beam technique has been used to measure changes in an average total neutron cross section of tin. The cross section was averaged over a neutron energy band from 23.1 to 24.9 keV, which covers a number of resonances. This average cross section, when measured for a sample of intermediate thickness, shows the effect of Doppler broadening of the resonances. The effective average total cross section increases as the temperature of the sample increases with a change of slope at the gray-to-white tin transition and a step at the melting point. The changes of slope and steps are evidence of changes in the thermal motions of the tin atoms in the sample when the sample changes its physical state.