ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
G. Kamelander, F. Putz
Nuclear Science and Engineering | Volume 74 | Number 1 | April 1980 | Pages 13-22
Technical Paper | doi.org/10.13182/NSE80-A18941
Articles are hosted by Taylor and Francis Online.
The method of overlapping neutron spectra has been developed by Selengut to calculate neutron spectra and reaction rates in weakly absorbing media with temperature discontinuities. A combination of Selengut's method with multicollision probability theory leads to a new thermalization method suitable to a wider field of application, especially to the homogenization of reactor cells. Based on this theory, the code THERMAL has been written. The results of THERMAL have been compared with those of the standard transport code THERMOS. Comparison of the results gave a satisfactory correspondence. Compared to THERMOS, the computing time and the storage capacity requirements of THERMAL are fairly small.