ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
G. Kamelander, F. Putz
Nuclear Science and Engineering | Volume 74 | Number 1 | April 1980 | Pages 13-22
Technical Paper | doi.org/10.13182/NSE80-A18941
Articles are hosted by Taylor and Francis Online.
The method of overlapping neutron spectra has been developed by Selengut to calculate neutron spectra and reaction rates in weakly absorbing media with temperature discontinuities. A combination of Selengut's method with multicollision probability theory leads to a new thermalization method suitable to a wider field of application, especially to the homogenization of reactor cells. Based on this theory, the code THERMAL has been written. The results of THERMAL have been compared with those of the standard transport code THERMOS. Comparison of the results gave a satisfactory correspondence. Compared to THERMOS, the computing time and the storage capacity requirements of THERMAL are fairly small.