ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
H. W. Lefevre, J. C. Davis, J. D. Anderson
Nuclear Science and Engineering | Volume 70 | Number 1 | April 1979 | Pages 60-65
Technical Paper | doi.org/10.13182/NSE79-A18927
Articles are hosted by Taylor and Francis Online.
When collectively accelerated deuterons in pulsed electron beam machines interact with structural materials and insulators, they produce neutrons that can be used for diagnostic purposes. This paper describes a method for synthesizing neutron spectra that such devices might produce. It involves averaging experimental nuclear reaction data over angle and over energy to approximate the distributions in angle and in energy of deuterons as they impinge upon materials. Neutron time-of-flight (TOF) spectra were obtained using the Lawrence Livermore Laboratory tandem Van de Graaff accelerator and a 16-detector TOF spectrometer. Spectra were recorded at each of 16 angles for deuterons having energies of 2.5, 3.0, and 3.5 MeV on thick targets of carbon, aluminum, Teflon, CH2, and CD2. When summed over 4π sr at constant neutron energy to approximate (for example) the neutron spectrum from isotropic mono-energetic deuterons, the 19F(d,n) and 27Al(d,n) spectra still show well-resolved high-energy peaks at each bombarding energy. The synthesized TOF spectra that would be observed for such a case with pulse mode detectors and those that would be observed with current mode scintillation detectors are presented.