ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Richard Ziskind, William E. Kastenberg
Nuclear Science and Engineering | Volume 44 | Number 1 | April 1971 | Pages 86-94
Technical Paper | doi.org/10.13182/NSE71-A18908
Articles are hosted by Taylor and Francis Online.
The stability problem for point kinetics models described by a set of nonlinear differential equations is treated by conversion to a set of Volterra integral equations. The kernels appearing in the resultant set are classified as to monotone behavior and comparison theorems are presented for the various classifications. The comparison theorems are utilized to calculate solution bounds and stability domains for three systems of practical interest: prompt power feedback, single temperature with prompt power coefficient, and the Hansen-Fuchs model. It is shown that similarity transformations are useful for enlarging the stability domain. An iteration procedure is also developed for a particular class of integral operators. This procedure is useful for finding convergent bounds for the true system behavior.