ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Richard Ziskind, William E. Kastenberg
Nuclear Science and Engineering | Volume 44 | Number 1 | April 1971 | Pages 86-94
Technical Paper | doi.org/10.13182/NSE71-A18908
Articles are hosted by Taylor and Francis Online.
The stability problem for point kinetics models described by a set of nonlinear differential equations is treated by conversion to a set of Volterra integral equations. The kernels appearing in the resultant set are classified as to monotone behavior and comparison theorems are presented for the various classifications. The comparison theorems are utilized to calculate solution bounds and stability domains for three systems of practical interest: prompt power feedback, single temperature with prompt power coefficient, and the Hansen-Fuchs model. It is shown that similarity transformations are useful for enlarging the stability domain. An iteration procedure is also developed for a particular class of integral operators. This procedure is useful for finding convergent bounds for the true system behavior.