ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Stefano L. Paveri-Fontana, Harvey Amster
Nuclear Science and Engineering | Volume 44 | Number 1 | April 1971 | Pages 44-57
Technical Paper | doi.org/10.13182/NSE71-A18904
Articles are hosted by Taylor and Francis Online.
The double spherical harmonics method has hitherto been considered applicable only if two conditions are fulfilled: (a) the directions of the assumed angular discontinuities could be assigned a priori by symmetry, and (b) at every boundary surface, these directions lie in a tangent plane. In this paper, the DP-0 approximation is reformulated to cover all situations; for some new ones, the accuracy is predictably better than that from the P-1 approximation. The directions of the angular discontinuity now have to be calculated, but a straightforward generalization of the usual derivation fails to furnish such a procedure. This generalization also retains a former uncertainty about how much of a delta function is on each side of the angular discontinuity. A variational principle is used as one way to settle both of these issues. Anisotropic scattering is allowed. Remarkably, the completed formulation differs from ordinary diffusion theory, including boundary conditions, only in the definition of the diffusion coefficient. A standard diffusion theory calculation can accommodate whichever type of theory is preferred in any particular region of a single problem; the adjustment is made merely by assigning the corresponding diffusion coefficient there. The variational principle implies that the delta function should be divided evenly into two parts at the discontinuity. However, this division is not a mathematically inherent property of the delta function, as sometimes thought, and other formulations for spherical and cylindrical geometries have placed the delta function entirely in the forward hemisphere of directions. Examples showing superior accuracy and physical interpretations supported that choice, but they are matched here by other examples favoring different divisions.