ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Stefano L. Paveri-Fontana, Harvey Amster
Nuclear Science and Engineering | Volume 44 | Number 1 | April 1971 | Pages 44-57
Technical Paper | doi.org/10.13182/NSE71-A18904
Articles are hosted by Taylor and Francis Online.
The double spherical harmonics method has hitherto been considered applicable only if two conditions are fulfilled: (a) the directions of the assumed angular discontinuities could be assigned a priori by symmetry, and (b) at every boundary surface, these directions lie in a tangent plane. In this paper, the DP-0 approximation is reformulated to cover all situations; for some new ones, the accuracy is predictably better than that from the P-1 approximation. The directions of the angular discontinuity now have to be calculated, but a straightforward generalization of the usual derivation fails to furnish such a procedure. This generalization also retains a former uncertainty about how much of a delta function is on each side of the angular discontinuity. A variational principle is used as one way to settle both of these issues. Anisotropic scattering is allowed. Remarkably, the completed formulation differs from ordinary diffusion theory, including boundary conditions, only in the definition of the diffusion coefficient. A standard diffusion theory calculation can accommodate whichever type of theory is preferred in any particular region of a single problem; the adjustment is made merely by assigning the corresponding diffusion coefficient there. The variational principle implies that the delta function should be divided evenly into two parts at the discontinuity. However, this division is not a mathematically inherent property of the delta function, as sometimes thought, and other formulations for spherical and cylindrical geometries have placed the delta function entirely in the forward hemisphere of directions. Examples showing superior accuracy and physical interpretations supported that choice, but they are matched here by other examples favoring different divisions.