ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
Paul G. Lorenzini, Alan H. Robinson
Nuclear Science and Engineering | Volume 44 | Number 1 | April 1971 | Pages 27-36
Technical Paper | doi.org/10.13182/NSE71-A18902
Articles are hosted by Taylor and Francis Online.
The spectral-synthesis method is investigated to assess its applicability for solving the diffusion equation in fast reactor design. The equations are derived so they may be solved by a standard diffusion theory code that allows upscattering. A reference 1000-MW(e) fast reactor is studied and two-dimensional solutions are obtained. The problem of selecting trial functions is examined and four different sets are used in the calculations. The results are compared with few-group calculations to test both accuracy and running times. The few-group and synthesis approximations are, in turn, compared with a 26-group solution which is treated as an exact solution. Some numerical instabilities are experienced and examined. It is concluded that the instabilities are caused by a complete coupling between equations in the scattering matrix. The accuracy of the synthesis approximation is comparable with the few-group approximation for calculating eigenvalues and is slightly superior for determining the flux in the core.