ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
R. N. Hwang
Nuclear Science and Engineering | Volume 36 | Number 1 | April 1969 | Pages 67-81
Technical Paper | doi.org/10.13182/NSE69-A18858
Articles are hosted by Taylor and Francis Online.
As a part of a series of studies now under way, this paper discusses the analytical aspect of the problems encountered in the application of multilevel formalism to the fast reactor Doppler effect analysis in the unresolved region. The concept of the “statistical collision matrix” introduced by Moldauer1 was used. The paper is divided into two parts. Part I describes the formulation and statistical consideration of the problem. For S-matrix formulation, the Doppler broadened cross sections using ideal gas model can be expressed in terms of the well-known broadened line shape functions. These functions are readily amenable for reactor calculations using any existing resonance integral code with some trivial modifications. The statistical behavior of the S-matrix parameters is also discussed in some detail. In order to improve understanding of the nature of the problem, an illustrative example was carried out analytically for the case of two interfering levels. Two more realistic examples pertinent to the fissile isotopes of interest are also given by numerical calculations using 50 interfering levels. These examples provide good qualitative descriptions of the statistical behavior of the S-matrix parameters that one may expect in the reactor Doppler effect studies. Part II deals with the application of the multilevel formalism in the Doppler effect studies.