ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
W. N. McElroy, S. Berg, T. B. Crockett, R. J. Tuttle
Nuclear Science and Engineering | Volume 36 | Number 1 | April 1969 | Pages 15-27
Technical Paper | doi.org/10.13182/NSE69-A18853
Articles are hosted by Taylor and Francis Online.
A multiple foil activation iterative method has been used to experimentally determine neutron flux spectra in various types of neutron environments. The method involves irradiation of a set of different foil detectors, measurement of resultant activities, and adjustment of a spectrum selected as an initial approximation to obtain a good-fit solution for a set of simultaneous activation integral equations. A computer code, SAND-II, is used to obtain this solution. Spectra from thermal and fast reactors and from beam sources have been measured. In each experiment, a set of more than ten foil detectors, encompassing low- and high-energy neutron-induced reactions, was irradiated and used as input to SAND-II. Solutions obtained are compared with diffusion, transport, or Monte Carlo calculations or with spectrometer measurements. It is concluded that the multiple foil activation iterative method is an important adjunct to calculational and neutron spectrometer techniques used to determine neutron flux spectra.