ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
K. D. Lathrop, N. S. Demuth
Nuclear Science and Engineering | Volume 32 | Number 1 | April 1968 | Pages 120-130
Technical Paper | doi.org/10.13182/NSE68-A18831
Articles are hosted by Taylor and Francis Online.
A new system of biorthogonal polynomials is developed for the angular expansion of the directional flux in the linear Boltzmann transport equation. It is shown in systems infinite in one space dimension that the angular integral in the Boltzmann equation can be reduced to a weighted integral over the unit circle. The corresponding system of orthogonal functions is found to be a system of two sets of polynomials in two variables. Recursion relations and an addition theorem are derived for these polynomials. The angular dependence of the particle flux is expanded in each set of these polynomials. Systems of partial differential equations are derived for the expansion coefficients, that is, for angular moments of the particle flux. One of these systems is shown to be a specific linear combination of the equations obtained when the directional flux is expanded in spherical harmonics functions specialized for the geometry considered. It is shown that this same system, in (x, y) geometry, reduces simply to the spherical harmonics equations in one-dimensional plane geometry.