ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
K. D. Lathrop, N. S. Demuth
Nuclear Science and Engineering | Volume 32 | Number 1 | April 1968 | Pages 120-130
Technical Paper | doi.org/10.13182/NSE68-A18831
Articles are hosted by Taylor and Francis Online.
A new system of biorthogonal polynomials is developed for the angular expansion of the directional flux in the linear Boltzmann transport equation. It is shown in systems infinite in one space dimension that the angular integral in the Boltzmann equation can be reduced to a weighted integral over the unit circle. The corresponding system of orthogonal functions is found to be a system of two sets of polynomials in two variables. Recursion relations and an addition theorem are derived for these polynomials. The angular dependence of the particle flux is expanded in each set of these polynomials. Systems of partial differential equations are derived for the expansion coefficients, that is, for angular moments of the particle flux. One of these systems is shown to be a specific linear combination of the equations obtained when the directional flux is expanded in spherical harmonics functions specialized for the geometry considered. It is shown that this same system, in (x, y) geometry, reduces simply to the spherical harmonics equations in one-dimensional plane geometry.