ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
M. N. Moore
Nuclear Science and Engineering | Volume 21 | Number 4 | April 1965 | Pages 565-574
Technical Paper | doi.org/10.13182/NSE65-A18800
Articles are hosted by Taylor and Francis Online.
The propagation of neutron waves through homogeneous nuclear systems, multiplying or non-multiplying, is studied with the aid of the general linear model. This model is characterized by a relationship between the complex wave length and frequency, a dispersion law. It is shown that, independent of the geometry of the system, the nature of the propagation and hence the neutron wave optics of the medium, is governed by this dispersion law. It is also shown how this dispersion law can be measured in the general situation, using spectral analysis and modal decontamination techniques. When specialized to particular geometries, but not to particular systems, the possibility of stop-and-pass frequencies emerges. When specialized still further to a multiplying system governed by age-diffusion theory, a new criterion for criticality is found. This latter should be of interest in monitoring the approach to critical condition in a large reactor whose kinetics are spatially dependent.