ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IEA report: Challenges need to be resolved to support global nuclear energy growth
The International Energy Agency published a new report this month outlining how continued innovation, government support, and new business models can unleash nuclear power expansion worldwide.
The Path to a New Era for Nuclear Energy report “reviews the status of nuclear energy around the world and explores risks related to policies, construction, and financing.”
Find the full report at IEA.org.
William E. Loewe
Nuclear Science and Engineering | Volume 21 | Number 4 | April 1965 | Pages 536-549
Technical Paper | doi.org/10.13182/NSE65-A18798
Articles are hosted by Taylor and Francis Online.
The two-group neutron diffusion equations have been applied to multiregion reactors to obtain the transfer function for an arbitrarily located, localized oscillatory absorber and an arbitrarily located point of observation. Results obtained from a digital computer program written for the case of symmetrical slab geometry extend previous work on space-dependent zero-power transfer functions, and establish criteria for calibrating reactor control rods by oscillation. Simple physical models suggested to explain the space-dependent effects are intuitively satisfying, agree with the computed results, and are expressed in terms that permit general application. One model describes special high-frequency behavior of the phase angle of the transfer function; another model describes the exaggerated space-dependent effects observed previously in rod calibration by oscillation.