ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. I. Smith
Nuclear Science and Engineering | Volume 21 | Number 4 | April 1965 | Pages 481-489
Technical Paper | doi.org/10.13182/NSE65-A18792
Articles are hosted by Taylor and Francis Online.
The change in k∞ of a heterogeneous lattice caused by a uniform change in the temperature of the fuel has been measured, using the Physical Constants Testing Reactor (PCTR). The test lattice was moderated with graphite and fueled with concentric-tube elements of slightly enriched uranium metal. The temperature of the fuel was varied from 297 to 1241°K. The change in k∞ with temperature was nonlinear and could be represented by the relation where T is in degrees Kelvin. The experimentally measured values of the constants were α = (−0.308 ± 0.004), β = (−0.120 ± 0.004), γ = (−0.085 ± 0.004). The unit functions, U, represent the changes in k∞ caused by the isothermal volume expansion of the fuel element when the uranium metal undergoes transformations in its crystal structure from alpha to beta and from beta to gamma phases. The term C is a normalization factor related to the lattice under study. The reactivity techniques employed here are shown to be four times more sensitive than activation methods for determining the functional relationship between the effective resonance integral of a fuel element and the temperature of the element. The constant, α, has been experimentally separated into two components: αv = (−0.240 ± 0.04). which is associated with the average interior temperature of the fuel, and αs = (−0.068 ± 0.04), which is associated with the temperature of the surface of the fuel. This separation allows treatment of nonuniform temperature distribution in the fuel.