ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS and the U.K.’s NI announce reciprocal membership agreement
With President Trump on a state visit to the U.K., in part to sign a landmark new agreement on U.S.-U.K. nuclear collaboration, a flurry of transatlantic partnerships and deals bridging the countries’ nuclear sectors have been announced.
The American Nuclear Society is taking an active role in this bridge-building by forming a reciprocal membership agreement with the U.K.’s Nuclear Institute.
R. J. Scavuzzo
Nuclear Science and Engineering | Volume 21 | Number 4 | April 1965 | Pages 463-472
Technical Paper | doi.org/10.13182/NSE65-A18790
Articles are hosted by Taylor and Francis Online.
It has been observed that high-velocity coolant flowing through the channels of a parallel-plate fuel assembly will at times cause large deflections of the assembly plates. In the present investigation, hydraulic equations are coupled to the plate equations along the entire length of the assembly. Solution of these coupled equations was accomplished by changing the differential equation developed from plate theory into a non-linear integral equation. The classical method of successive approximations was used to evaluate the integral equation numerically. Numerical results show that: 1) plate deflections take place along the entire length of the plate, and 2) local reductions in channel cross section are further reduced by elastic deflections of the plate.