ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
H. Waldinger, J. Agresta, G. Goertzel
Nuclear Science and Engineering | Volume 18 | Number 4 | April 1964 | Pages 459-467
Technical Paper | doi.org/10.13182/NSE64-A18764
Articles are hosted by Taylor and Francis Online.
A method is formulated for numerical integration of the spherical-harmonics equations in the case of cylindrical geometry. This method avoids many of the difficulties of the usual analytical techniques and allows space-varying sources as well as regions of low neutron cross section and large physical size. The usual spherical-harmonic equations (truncated) are presented in cylindrical geometry. To obtain a set of equations which (because they are more intuitive in form) lead to readily manageable numerical solution, the equations are converted to the discrete ordinate form in cylindrical geometry. From the discrete-ordinate equations, one may readily discuss inward- and outward-going neutrons. Based on this, reflection matrices are introduced at each radius r, one describing the reflection of inwardly directed neutrons by the medium inward of r and the other describing the reflection of outwardly directed neutrons by the medium outward of r. The complete source-independent properties of the medium are described by these reflection matrices. Furthermore, the matrices can be obtained by numerical integration in a single pass, one by integrating from the center out and the other by integrating from the outside in. The source can be treated by considering at each radius r the flux that escapes outward due to sources inward of r and by considering separately the flux that goes inward due to sources outward of r. The first of these escape fluxes is obtained by integration outward from the origin, using the corresponding reflection matrix, the second by integration inwards. Once the above quantities have been found, the fluxes are obtained by solution of simultaneous algebraic equations (no further integrations). Numerical results necessary for the use of this method in the P3 approximation are also given.