ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
J. R. Fagan, J. O. Mingle
Nuclear Science and Engineering | Volume 18 | Number 4 | April 1964 | Pages 443-447
Technical Paper | doi.org/10.13182/NSE64-A18762
Articles are hosted by Taylor and Francis Online.
The standard analytical approaches to calculating the maximum temperature and surface -heat-flow rate in nuclear reactor fuel plates over-estimates both of these quantities due to the omission of conduction along the axis of the plate. The more general problem, including axial conduction, has been solved for fuel plates in which the clad and meat can be assumed to have the same thermal properties. Calculations made for a natural-circulation reactor show over-estimates of the maximum surface heat flow rate of 4.5 percent and of the maximum temperature rise of 4.8 percent. The error is minimized for systems having a large convection heat-transfer coefficient and will be less than 0.5 percent for most power reactor systems.