ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. E. Houghtaling, J. E. Grund
Nuclear Science and Engineering | Volume 36 | Number 3 | June 1969 | Pages 412-426
Technical Paper | doi.org/10.13182/NSE69-A18738
Articles are hosted by Taylor and Francis Online.
Reactor kinetics investigations have been performed for cold-start-up, hot-start-up, hot-standby, and operating-power reactivity accidents using the UO2-fueled, pressurized-water type SPERT-III reactor. Power excursion behavior was predicted for every SPERT-III experiment by digital computer calculations using the SPERT-developed PARET code. Extrapolations for severe cold-start-up excursion consequences were obtained from severe transient tests on SPERT-III fuel samples in the SPERT-IV capsule driver core. Analyses of the SPERT-III data show that prompt moderator heating was as significant as the Doppler effect in limiting the magnitude of power excursions in the SPERT-III core at operating temperatures. Comparisons of calculations and experimental data demonstrate that PARET is capable of predicting power excursion behavior in SPERT-III within experimental uncertainty for the range of conditions investigated. The SPERT-III integral-core tests also provide a broad base of experimental data for demonstrations of the capabilities of other existing models in predicting non-damaging power excursion behavior in UO2-fueled reactors.