ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Weston M. Stacey, Jr.
Nuclear Science and Engineering | Volume 36 | Number 3 | June 1969 | Pages 389-401
Technical Paper | doi.org/10.13182/NSE69-A18736
Articles are hosted by Taylor and Francis Online.
A stochastic kinetic theory for space- and energy-dependent, zero power, nuclear reactor models is constructed from a last collision probability argument. The space and energy domains are partitioned into discrete cells. Equations are developed for the probabilities for transitions among the possible states of the reactor, and an equation is obtained for the probability generating function for these transition probabilities. Equations for the mean values, variances, covariances and correlation functions of the neutron and precursor distributions are derived. The stochastic distributions of neutrons and precursors are found to be space- and energy-dependent in subcritical reactors, but to attain a space- and energy- independent asymptotic form in supercritical reactors. The asymptotic distribution in a supercritical reactor is identical for the neutron and precursor distributions, and depends upon the manner in which the reactor is made supercritical. A method for applying the theory to low-source start-up calculations is suggested. The influence of spatial stochastic effects upon such calculations is demonstrated.