ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Ricardo Artigas, H. E. Hungerford
Nuclear Science and Engineering | Volume 36 | Number 3 | June 1969 | Pages 295-303
Technical Paper | doi.org/10.13182/NSE69-A18727
Articles are hosted by Taylor and Francis Online.
Expressions for the neutron flux at the exit of a cylindrical duct of radius δ and length l (with λ = δ2/l2), have been found by the use of the albedo concept and by the method of single-collision sources in the duct wall, based on monoenergetic integral transport theory. In contrast with other methods of solution, the isotropic area source of radius δ at the duct entrance is not approximated by a point source, and the numerical evaluation of integrals does not impose restrictions on the values of λ. Calculation of the neutron flux at the duct exit is expedited by the use of the tables given, which are a function of the duct geometry and were generated from the numerical evaluation of the integrals that appear in the expressions for the flux. Comparison of the results as predicted by the formulas developed in this paper and those predicted by already existing formulas with the results of a stochastic neutron-transport code indicates that the formulas developed here are always in better agreement with the results of the code. For values of λ < 1, the formulas developed here differ by a maximum of ± 10%, while the existing formulas differ by a maximum of more than 100%.