ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
Ricardo Artigas, H. E. Hungerford
Nuclear Science and Engineering | Volume 36 | Number 3 | June 1969 | Pages 295-303
Technical Paper | doi.org/10.13182/NSE69-A18727
Articles are hosted by Taylor and Francis Online.
Expressions for the neutron flux at the exit of a cylindrical duct of radius δ and length l (with λ = δ2/l2), have been found by the use of the albedo concept and by the method of single-collision sources in the duct wall, based on monoenergetic integral transport theory. In contrast with other methods of solution, the isotropic area source of radius δ at the duct entrance is not approximated by a point source, and the numerical evaluation of integrals does not impose restrictions on the values of λ. Calculation of the neutron flux at the duct exit is expedited by the use of the tables given, which are a function of the duct geometry and were generated from the numerical evaluation of the integrals that appear in the expressions for the flux. Comparison of the results as predicted by the formulas developed in this paper and those predicted by already existing formulas with the results of a stochastic neutron-transport code indicates that the formulas developed here are always in better agreement with the results of the code. For values of λ < 1, the formulas developed here differ by a maximum of ± 10%, while the existing formulas differ by a maximum of more than 100%.