ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
J. K. Dickens, F. G. Perey
Nuclear Science and Engineering | Volume 36 | Number 3 | June 1969 | Pages 280-290
Technical Paper | doi.org/10.13182/NSE69-A18725
Articles are hosted by Taylor and Francis Online.
We have obtained gamma-ray spectra for the reactions 14N(n, n′γ)14N, 14N(n,þγ)14C, and 14N(n, αγ)11B for incident mean neutron energies En = 5.8, 6.4, 6.8, 7.4, 8.0, and 8.6 MeV. The gamma rays were detected using a coaxial Ge(Li) detector of 30 cm3 active volume. The detector was placed at 55 and 90° with respect to the incident neutron direction, and was 77 cm from the sample; time-of-flight was used with the gamma-ray detector to discriminate against pulses due to neutrons and background gamma radiation. The sample was 100 g of Be3N2 in the form of a right circular cylinder. Data were also obtained using a 75-g Be sample to provide an estimate of the background. The incident neutron beam was produced by bombarding a deuterium-filled gas cell with the pulsed deuteron beam of appropriate energy from the ORNL 6-MV Van de Graaff. The resulting neutron beam was monitored using a scintillation counter; a time-of-flight spectrum from this detector was recorded simultaneously with the gamma-ray data. These data have been studied to obtain absolute cross sections for production of gamma rays from 14N for the incident neutron energies quoted above. The cross sections have been compared, where possible, with previously measured values with good agreement. However, there are several important differences with previous data and these are discussed. In particular, summing the partial cross sections yields a value for the total nonelastic cross section that is approximately half of the total nonelastic cross section obtained from the difference between the total cross section and the total elastic cross section.