ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
Yu. A. Zeigarnick, V. D. Litvinov
Nuclear Science and Engineering | Volume 73 | Number 1 | January 1980 | Pages 19-28
Technical Paper | doi.org/10.13182/NSE80-A18704
Articles are hosted by Taylor and Francis Online.
Data on the heat transfer and the pressure drop in sodium under forced convection boiling are presented. It is shown that in annular-dispersed flow, a difference between wall and saturation temperatures is small, being within 1 to 5°C. It is also shown that in two-phase alkali-metal flow with heat input friction losses are smaller than in adiabatic flow. This is associated with a “push aside” effect on the main stream of the vapor flowing from the interface. The heat transfer and friction loss data indicate that the phase change takes place by evaporation from a liquid film surface, without vapor bubble generation at the wall. The experiments showed that, even in the presence of artificial cavities, the incipient super-heat is statistical in nature. The efficiency of the double-reentrant-angle-type cavities and of inert gas injection as a means of stabilizing forced convection boiling of the alkali metal was proven.